SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the query-hard-pos-neg-doc-pairs-statictable dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-multilingual-base-v1")
# Run inference
sentences = [
'Arus dana Q3 2006',
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-search-multilingual-base-v1-evalandallstats-search-multilingual-base-v1-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | allstats-search-multilingual-base-v1-eval | allstats-search-multilingual-base-v1-test |
|---|---|---|
| pearson_cosine | 0.87 | 0.9023 |
| spearman_cosine | 0.8062 | 0.8093 |
Training Details
Training Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
- Size: 25,580 training samples
- Columns:
query,doc, andlabel - Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 7 tokens
- mean: 20.14 tokens
- max: 55 tokens
- min: 5 tokens
- mean: 24.9 tokens
- max: 47 tokens
- 0: ~70.80%
- 1: ~29.20%
- Samples:
query doc label Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020Jumlah Penghuni Lapas per Kanwil0status pekerjaan utama penduduk usia 15+ yang bekerja, 2020Jumlah Penghuni Lapas per Kanwil0STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020Jumlah Penghuni Lapas per Kanwil0 - Loss:
OnlineContrastiveLoss
Evaluation Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
- Size: 5,479 evaluation samples
- Columns:
query,doc, andlabel - Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 7 tokens
- mean: 20.78 tokens
- max: 52 tokens
- min: 4 tokens
- mean: 26.28 tokens
- max: 43 tokens
- 0: ~71.50%
- 1: ~28.50%
- Samples:
query doc label Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 20170bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 20170BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 20170 - Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64warmup_ratio: 0.05fp16: Trueload_best_model_at_end: Trueeval_on_start: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | allstats-search-multilingual-base-v1-eval_spearman_cosine | allstats-search-multilingual-base-v1-test_spearman_cosine |
|---|---|---|---|---|---|
| 0 | 0 | - | 1.3012 | 0.7447 | - |
| 0.05 | 20 | 0.9548 | 0.3980 | 0.7961 | - |
| 0.1 | 40 | 0.3959 | 0.3512 | 0.7993 | - |
| 0.15 | 60 | 0.1949 | 0.3102 | 0.8016 | - |
| 0.2 | 80 | 0.2126 | 0.4306 | 0.7967 | - |
| 0.25 | 100 | 0.2228 | 0.2865 | 0.8026 | - |
| 0.3 | 120 | 0.1306 | 0.2476 | 0.8035 | - |
| 0.35 | 140 | 0.172 | 0.2592 | 0.8014 | - |
| 0.4 | 160 | 0.1619 | 0.2495 | 0.8037 | - |
| 0.45 | 180 | 0.1416 | 0.1890 | 0.8046 | - |
| 0.5 | 200 | 0.1041 | 0.1717 | 0.8059 | - |
| 0.55 | 220 | 0.2145 | 0.2165 | 0.8049 | - |
| 0.6 | 240 | 0.0459 | 0.2176 | 0.8036 | - |
| 0.65 | 260 | 0.0627 | 0.2670 | 0.8023 | - |
| 0.7 | 280 | 0.1132 | 0.2309 | 0.8041 | - |
| 0.75 | 300 | 0.1048 | 0.2623 | 0.8028 | - |
| 0.8 | 320 | 0.0524 | 0.2328 | 0.8031 | - |
| 0.85 | 340 | 0.034 | 0.2580 | 0.8024 | - |
| 0.9 | 360 | 0.0664 | 0.2309 | 0.8034 | - |
| 0.95 | 380 | 0.0623 | 0.1746 | 0.8053 | - |
| 1.0 | 400 | 0.0402 | 0.2126 | 0.8041 | - |
| 1.05 | 420 | 0.0459 | 0.1660 | 0.8062 | - |
| 1.1 | 440 | 0.0739 | 0.1487 | 0.8068 | - |
| 1.15 | 460 | 0.0191 | 0.1595 | 0.8066 | - |
| 1.2 | 480 | 0.0073 | 0.1509 | 0.8066 | - |
| 1.25 | 500 | 0.0265 | 0.1779 | 0.8062 | - |
| 1.3 | 520 | 0.0325 | 0.2646 | 0.8032 | - |
| 1.35 | 540 | 0.0536 | 0.2818 | 0.8030 | - |
| 1.4 | 560 | 0.0076 | 0.1768 | 0.8057 | - |
| 1.45 | 580 | 0.011 | 0.1866 | 0.8054 | - |
| 1.5 | 600 | 0.0181 | 0.1726 | 0.8057 | - |
| 1.55 | 620 | 0.032 | 0.1881 | 0.8052 | - |
| 1.6 | 640 | 0.0459 | 0.1482 | 0.8066 | - |
| 1.65 | 660 | 0.041 | 0.1571 | 0.8065 | - |
| 1.7 | 680 | 0.0228 | 0.1298 | 0.807 | - |
| 1.75 | 700 | 0.0275 | 0.1571 | 0.8067 | - |
| 1.8 | 720 | 0.0 | 0.1624 | 0.8066 | - |
| 1.85 | 740 | 0.0218 | 0.1537 | 0.8068 | - |
| 1.9 | 760 | 0.0241 | 0.1699 | 0.8062 | - |
| 1.95 | 780 | 0.0065 | 0.1841 | 0.8059 | - |
| 2.0 | 800 | 0.0073 | 0.1805 | 0.8061 | - |
| 2.05 | 820 | 0.0 | 0.1703 | 0.8064 | - |
| 2.1 | 840 | 0.0 | 0.1702 | 0.8064 | - |
| 2.15 | 860 | 0.0 | 0.1717 | 0.8064 | - |
| 2.2 | 880 | 0.0 | 0.1717 | 0.8064 | - |
| 2.25 | 900 | 0.0 | 0.1717 | 0.8064 | - |
| 2.3 | 920 | 0.0097 | 0.1875 | 0.8059 | - |
| 2.35 | 940 | 0.0148 | 0.1868 | 0.8060 | - |
| 2.4 | 960 | 0.0067 | 0.2205 | 0.8051 | - |
| 2.45 | 980 | 0.0 | 0.2295 | 0.8049 | - |
| 2.5 | 1000 | 0.0154 | 0.2238 | 0.8052 | - |
| 2.55 | 1020 | 0.0063 | 0.2125 | 0.8055 | - |
| 2.6 | 1040 | 0.0 | 0.2183 | 0.8053 | - |
| 2.65 | 1060 | 0.0 | 0.2188 | 0.8053 | - |
| 2.7 | 1080 | 0.0068 | 0.2082 | 0.8056 | - |
| 2.75 | 1100 | 0.0384 | 0.1770 | 0.8060 | - |
| 2.8 | 1120 | 0.0 | 0.1645 | 0.8061 | - |
| 2.85 | 1140 | 0.0105 | 0.1613 | 0.8061 | - |
| 2.9 | 1160 | 0.0 | 0.1601 | 0.8061 | - |
| 2.95 | 1180 | 0.0 | 0.1601 | 0.8062 | - |
| 3.0 | 1200 | 0.0 | 0.1601 | 0.8062 | - |
| -1 | -1 | - | - | - | 0.8093 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- -
Model tree for yahyaabd/allstats-search-multilingual-base-v1
Dataset used to train yahyaabd/allstats-search-multilingual-base-v1
Evaluation results
- Pearson Cosine on allstats search multilingual base v1 evalself-reported0.870
- Spearman Cosine on allstats search multilingual base v1 evalself-reported0.806
- Pearson Cosine on allstats search multilingual base v1 testself-reported0.902
- Spearman Cosine on allstats search multilingual base v1 testself-reported0.809