Improve model card with paper link, system requirements, and sample usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
license: mit
|
| 3 |
language:
|
| 4 |
- en
|
| 5 |
- zh
|
| 6 |
-
pipeline_tag: text-generation
|
| 7 |
library_name: transformers
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
# GLM-4.5-Air-Base
|
|
@@ -21,7 +21,9 @@ library_name: transformers
|
|
| 21 |
<br>
|
| 22 |
👉 One click to <a href="https://chat.z.ai">GLM-4.5</a>.
|
| 23 |
</p>
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
## Model Introduction
|
| 26 |
|
| 27 |
The **GLM-4.5** series models are foundation models designed for intelligent agents. GLM-4.5 has **355** billion total parameters with **32** billion active parameters, while GLM-4.5-Air adopts a more compact design with **106** billion total parameters and **12** billion active parameters. GLM-4.5 models unify reasoning, coding, and intelligent agent capabilities to meet the complex demands of intelligent agent applications.
|
|
@@ -30,7 +32,7 @@ Both GLM-4.5 and GLM-4.5-Air are hybrid reasoning models that provide two modes:
|
|
| 30 |
|
| 31 |
We have open-sourced the base models, hybrid reasoning models, and FP8 versions of the hybrid reasoning models for both GLM-4.5 and GLM-4.5-Air. They are released under the MIT open-source license and can be used commercially and for secondary development.
|
| 32 |
|
| 33 |
-
As demonstrated in our comprehensive evaluation across 12 industry-standard benchmarks, GLM-4.5 achieves exceptional performance with a score of **63.2**, in the **3rd** place among all the proprietary and open-source
|
| 34 |
|
| 35 |

|
| 36 |
|
|
@@ -39,8 +41,155 @@ our [technical blog](https://z.ai/blog/glm-4.5). The technical report will be re
|
|
| 39 |
|
| 40 |
The model code, tool parser and reasoning parser can be found in the implementation of [transformers](https://github.com/huggingface/transformers/tree/main/src/transformers/models/glm4_moe), [vLLM](https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/glm4_moe_mtp.py) and [SGLang](https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/models/glm4_moe.py).
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
## Quick Start
|
| 43 |
|
| 44 |
**Note**: This is a base model, not for chat.
|
| 45 |
|
| 46 |
-
Please
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
- zh
|
|
|
|
| 5 |
library_name: transformers
|
| 6 |
+
license: mit
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
---
|
| 9 |
|
| 10 |
# GLM-4.5-Air-Base
|
|
|
|
| 21 |
<br>
|
| 22 |
👉 One click to <a href="https://chat.z.ai">GLM-4.5</a>.
|
| 23 |
</p>
|
| 24 |
+
|
| 25 |
+
This repository contains the base model presented in the paper [GLM-4.5: Agentic, Reasoning, and Coding (ARC) Foundation Models](https://huggingface.co/papers/2508.06471).
|
| 26 |
+
|
| 27 |
## Model Introduction
|
| 28 |
|
| 29 |
The **GLM-4.5** series models are foundation models designed for intelligent agents. GLM-4.5 has **355** billion total parameters with **32** billion active parameters, while GLM-4.5-Air adopts a more compact design with **106** billion total parameters and **12** billion active parameters. GLM-4.5 models unify reasoning, coding, and intelligent agent capabilities to meet the complex demands of intelligent agent applications.
|
|
|
|
| 32 |
|
| 33 |
We have open-sourced the base models, hybrid reasoning models, and FP8 versions of the hybrid reasoning models for both GLM-4.5 and GLM-4.5-Air. They are released under the MIT open-source license and can be used commercially and for secondary development.
|
| 34 |
|
| 35 |
+
As demonstrated in our comprehensive evaluation across 12 industry-standard benchmarks, GLM-4.5 achieves exceptional performance with a score of **63.2**, in the **3rd** place among all the proprietary and open-source models. Notably, GLM-4.5-Air delivers competitive results at **59.8** while maintaining superior efficiency.
|
| 36 |
|
| 37 |

|
| 38 |
|
|
|
|
| 41 |
|
| 42 |
The model code, tool parser and reasoning parser can be found in the implementation of [transformers](https://github.com/huggingface/transformers/tree/main/src/transformers/models/glm4_moe), [vLLM](https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/glm4_moe_mtp.py) and [SGLang](https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/models/glm4_moe.py).
|
| 43 |
|
| 44 |
+
## System Requirements
|
| 45 |
+
|
| 46 |
+
### Inference
|
| 47 |
+
|
| 48 |
+
We provide minimum and recommended configurations for "full-featured" model inference. The data in the table below is
|
| 49 |
+
based on the following conditions:
|
| 50 |
+
|
| 51 |
+
1. All models use MTP layers and specify
|
| 52 |
+
`--speculative-num-steps 3 --speculative-eagle-topk 1 --speculative-num-draft-tokens 4` to ensure competitive
|
| 53 |
+
inference speed.
|
| 54 |
+
2. The `cpu-offload` parameter is not used.
|
| 55 |
+
3. Inference batch size does not exceed `8`.
|
| 56 |
+
4. All are executed on devices that natively support FP8 inference, ensuring both weights and cache are in FP8 format.
|
| 57 |
+
5. Server memory must exceed `1T` to ensure normal model loading and operation.
|
| 58 |
+
|
| 59 |
+
The models can run under the configurations in the table below:
|
| 60 |
+
|
| 61 |
+
| Model | Precision | GPU Type and Count | Test Framework |
|
| 62 |
+
|---|---|---|---|
|
| 63 |
+
| GLM-4.5 | BF16 | H100 x 16 / H200 x 8 | sglang |
|
| 64 |
+
| GLM-4.5 | FP8 | H100 x 8 / H200 x 4 | sglang |
|
| 65 |
+
| GLM-4.5-Air | BF16 | H100 x 4 / H200 x 2 | sglang |
|
| 66 |
+
| GLM-4.5-Air | FP8 | H100 x 2 / H200 x 1 | sglang |
|
| 67 |
+
|
| 68 |
+
Under the configurations in the table below, the models can utilize their full 128K context length:
|
| 69 |
+
|
| 70 |
+
| Model | Precision | GPU Type and Count | Test Framework |
|
| 71 |
+
|---|---|---|---|
|
| 72 |
+
| GLM-4.5 | BF16 | H100 x 32 / H200 x 16 | sglang |
|
| 73 |
+
| GLM-4.5 | FP8 | H100 x 16 / H200 x 8 | sglang |
|
| 74 |
+
| GLM-4.5-Air | BF16 | H100 x 8 / H200 x 4 | sglang |
|
| 75 |
+
| GLM-4.5-Air | FP8 | H100 x 4 / H200 x 2 | sglang |
|
| 76 |
+
|
| 77 |
+
### Fine-tuning
|
| 78 |
+
|
| 79 |
+
The code can run under the configurations in the table below
|
| 80 |
+
using [Llama Factory](https://github.com/hiyouga/LLaMA-Factory):
|
| 81 |
+
|
| 82 |
+
| Model | GPU Type and Count | Strategy | Batch Size (per GPU) |
|
| 83 |
+
|---|---|---|---|
|
| 84 |
+
| GLM-4.5 | H100 x 16 | Lora | 1 |
|
| 85 |
+
| GLM-4.5-Air | H100 x 4 | Lora | 1 |
|
| 86 |
+
|
| 87 |
+
The code can run under the configurations in the table below using [Swift](https://github.com/modelscope/ms-swift):
|
| 88 |
+
|
| 89 |
+
| Model | GPU Type and Count | Strategy | Batch Size (per GPU) |
|
| 90 |
+
|---|---|---|---|
|
| 91 |
+
| GLM-4.5 | H20 (96GiB) x 16 | Lora | 1 |
|
| 92 |
+
| GLM-4.5-Air | H20 (96GiB) x 4 | Lora | 1 |
|
| 93 |
+
| GLM-4.5 | H20 (96GiB) x 128 | SFT | 1 |
|
| 94 |
+
| GLM-4.5-Air | H20 (96GiB) x 32 | SFT | 1 |
|
| 95 |
+
| GLM-4.5 | H20 (96GiB) x 128 | RL | 1 |
|
| 96 |
+
| GLM-4.5-Air | H20 (96GiB) x 32 | RL | 1 |
|
| 97 |
+
|
| 98 |
## Quick Start
|
| 99 |
|
| 100 |
**Note**: This is a base model, not for chat.
|
| 101 |
|
| 102 |
+
Please install the required packages according to `requirements.txt`.
|
| 103 |
+
|
| 104 |
+
```bash
|
| 105 |
+
pip install -r requirements.txt
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
### transformers
|
| 109 |
+
|
| 110 |
+
Here's a basic example to use the model with the `transformers` library for text generation:
|
| 111 |
+
|
| 112 |
+
```python
|
| 113 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 114 |
+
import torch
|
| 115 |
+
|
| 116 |
+
model_id = "zai-org/GLM-4.5-Air-Base"
|
| 117 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 118 |
+
# Ensure to load with the correct dtype, e.g., bfloat16 as specified in config.json
|
| 119 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
| 120 |
+
|
| 121 |
+
prompt = "Hello, I'm a language model,"
|
| 122 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 123 |
+
|
| 124 |
+
# Generate
|
| 125 |
+
generate_ids = model.generate(inputs.input_ids, max_new_tokens=100)
|
| 126 |
+
print(tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0])
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
The GitHub repository provides more detailed examples, including `trans_infer_cli.py`.
|
| 130 |
+
|
| 131 |
+
### vLLM
|
| 132 |
+
|
| 133 |
+
Both BF16 and FP8 can be started with the following code:
|
| 134 |
+
|
| 135 |
+
```bash
|
| 136 |
+
vllm serve zai-org/GLM-4.5-Air \
|
| 137 |
+
--tensor-parallel-size 8 \
|
| 138 |
+
--tool-call-parser glm45 \
|
| 139 |
+
--reasoning-parser glm45 \
|
| 140 |
+
--enable-auto-tool-choice \
|
| 141 |
+
--served-model-name glm-4.5-air
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
If you're using 8x H100 GPUs and encounter insufficient memory when running the GLM-4.5 model, you'll need
|
| 145 |
+
`--cpu-offload-gb 16` (only applicable to vLLM).
|
| 146 |
+
|
| 147 |
+
If you encounter `flash infer` issues, use `VLLM_ATTENTION_BACKEND=XFORMERS` as a temporary replacement. You can also
|
| 148 |
+
specify `TORCH_CUDA_ARCH_LIST='9.0+PTX'` to use `flash infer` (different GPUs have different TORCH_CUDA_ARCH_LIST
|
| 149 |
+
values, please check accordingly).
|
| 150 |
+
|
| 151 |
+
### SGLang
|
| 152 |
+
|
| 153 |
+
+ BF16
|
| 154 |
+
|
| 155 |
+
```bash
|
| 156 |
+
python3 -m sglang.launch_server \
|
| 157 |
+
--model-path zai-org/GLM-4.5-Air \
|
| 158 |
+
--tp-size 8 \
|
| 159 |
+
--tool-call-parser glm45 \
|
| 160 |
+
--reasoning-parser glm45 \
|
| 161 |
+
--speculative-algorithm EAGLE \
|
| 162 |
+
--speculative-num-steps 3 \
|
| 163 |
+
--speculative-eagle-topk 1 \
|
| 164 |
+
--speculative-num-draft-tokens 4 \
|
| 165 |
+
--mem-fraction-static 0.7 \
|
| 166 |
+
--served-model-name glm-4.5-air \
|
| 167 |
+
--host 0.0.0.0 \
|
| 168 |
+
--port 8000
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
+ FP8
|
| 172 |
+
|
| 173 |
+
```bash
|
| 174 |
+
python3 -m sglang.launch_server \
|
| 175 |
+
--model-path zai-org/GLM-4.5-Air-FP8 \
|
| 176 |
+
--tp-size 4 \
|
| 177 |
+
--tool-call-parser glm45 \
|
| 178 |
+
--reasoning-parser glm45 \
|
| 179 |
+
--speculative-algorithm EAGLE \
|
| 180 |
+
--speculative-num-steps 3 \
|
| 181 |
+
--speculative-eagle-topk 1 \
|
| 182 |
+
--speculative-num-draft-tokens 4 \
|
| 183 |
+
--mem-fraction-static 0.7 \
|
| 184 |
+
--disable-shared-experts-fusion \
|
| 185 |
+
--served-model-name glm-4.5-air-fp8 \
|
| 186 |
+
--host 0.0.0.0 \
|
| 187 |
+
--port 8000
|
| 188 |
+
```
|
| 189 |
+
|
| 190 |
+
### Request Parameter Instructions
|
| 191 |
+
|
| 192 |
+
+ When using `vLLM` and `SGLang`, thinking mode is enabled by default when sending requests. If you want to disable the
|
| 193 |
+
thinking switch, you need to add the `extra_body={"chat_template_kwargs": {"enable_thinking": False}}` parameter.
|
| 194 |
+
+ Both support tool calling. Please use OpenAI-style tool description format for calls.
|
| 195 |
+
+ For specific code, please refer to `api_request.py` in the `inference` folder.
|