albert-squad-qa / README.md
HariomSahu's picture
Training run v20250727_173457 - F1: 88.7676, EM: 80.4541
9fa2b06 verified
metadata
language: en
tags:
  - question-answering
  - squad
  - transformers
datasets:
  - squad
metrics:
  - exact_match
  - f1
model-index:
  - name: HariomSahu/albert-squad-qa
    results:
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: SQuAD
          type: squad
        metrics:
          - type: exact_match
            value: N/A
          - type: f1
            value: 89.93540108105752

albert-base-v2 fine-tuned on SQuAD

This model is a fine-tuned version of albert-base-v2 on the SQuAD dataset.

Training Details

Training Hyperparameters

  • Model: albert-base-v2
  • Dataset: SQuAD
  • Optimizer: adamw
  • Learning Rate Scheduler: cosine_with_restarts
  • Learning Rate: 6e-05
  • Batch Size: 28 per device
  • Total Batch Size: 224
  • Epochs: 6 (with early stopping)
  • Weight Decay: 0.005
  • Warmup Ratio: 0.08
  • Max Gradient Norm: 0.5

Early Stopping

  • Patience: 4
  • Metric: f1
  • Best Epoch: 2

Usage

from transformers import AutoTokenizer, AutoModelForQuestionAnswering

tokenizer = AutoTokenizer.from_pretrained("HariomSahu/albert-squad-qa")
model = AutoModelForQuestionAnswering.from_pretrained("HariomSahu/albert-squad-qa")

# Example usage
question = "What is the capital of France?"
context = "France is a country in Europe. Its capital city is Paris."

inputs = tokenizer(question, context, return_tensors="pt")
outputs = model(**inputs)

# Get answer
start_scores, end_scores = outputs.start_logits, outputs.end_logits
start_index = start_scores.argmax()
end_index = end_scores.argmax()
answer = tokenizer.decode(inputs["input_ids"][0][start_index:end_index+1])
print(f"Answer: {answer}")

Evaluation Results

The model achieved the following results on the evaluation set:

  • Exact Match: 80.4541
  • F1 Score: 88.7676

Training Configuration Hash

Config Hash: a8d23824

This hash can be used to reproduce the exact training configuration.