|
|
--- |
|
|
language: en |
|
|
tags: |
|
|
- question-answering |
|
|
- squad |
|
|
- transformers |
|
|
datasets: |
|
|
- squad |
|
|
metrics: |
|
|
- exact_match |
|
|
- f1 |
|
|
model-index: |
|
|
- name: HariomSahu/albert-squad-qa |
|
|
results: |
|
|
- task: |
|
|
type: question-answering |
|
|
name: Question Answering |
|
|
dataset: |
|
|
name: SQuAD |
|
|
type: squad |
|
|
metrics: |
|
|
- type: exact_match |
|
|
value: N/A |
|
|
- type: f1 |
|
|
value: 89.93540108105752 |
|
|
--- |
|
|
|
|
|
# albert-base-v2 fine-tuned on SQuAD |
|
|
|
|
|
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the SQuAD dataset. |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Hyperparameters |
|
|
|
|
|
- **Model**: albert-base-v2 |
|
|
- **Dataset**: SQuAD |
|
|
- **Optimizer**: adamw |
|
|
- **Learning Rate Scheduler**: cosine_with_restarts |
|
|
- **Learning Rate**: 6e-05 |
|
|
- **Batch Size**: 28 per device |
|
|
- **Total Batch Size**: 224 |
|
|
- **Epochs**: 6 (with early stopping) |
|
|
- **Weight Decay**: 0.005 |
|
|
- **Warmup Ratio**: 0.08 |
|
|
- **Max Gradient Norm**: 0.5 |
|
|
|
|
|
### Early Stopping |
|
|
|
|
|
- **Patience**: 4 |
|
|
- **Metric**: f1 |
|
|
- **Best Epoch**: 2 |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from transformers import AutoTokenizer, AutoModelForQuestionAnswering |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("HariomSahu/albert-squad-qa") |
|
|
model = AutoModelForQuestionAnswering.from_pretrained("HariomSahu/albert-squad-qa") |
|
|
|
|
|
# Example usage |
|
|
question = "What is the capital of France?" |
|
|
context = "France is a country in Europe. Its capital city is Paris." |
|
|
|
|
|
inputs = tokenizer(question, context, return_tensors="pt") |
|
|
outputs = model(**inputs) |
|
|
|
|
|
# Get answer |
|
|
start_scores, end_scores = outputs.start_logits, outputs.end_logits |
|
|
start_index = start_scores.argmax() |
|
|
end_index = end_scores.argmax() |
|
|
answer = tokenizer.decode(inputs["input_ids"][0][start_index:end_index+1]) |
|
|
print(f"Answer: {answer}") |
|
|
``` |
|
|
|
|
|
## Evaluation Results |
|
|
|
|
|
The model achieved the following results on the evaluation set: |
|
|
|
|
|
- **Exact Match**: 80.4541 |
|
|
- **F1 Score**: 88.7676 |
|
|
|
|
|
## Training Configuration Hash |
|
|
|
|
|
Config Hash: a8d23824 |
|
|
|
|
|
This hash can be used to reproduce the exact training configuration. |
|
|
|