garrison's picture
Upload README.md with huggingface_hub
d92fb4e verified
metadata
language:
  - en
library_name: transformers
tags:
  - glm
  - MOE
  - pruning
  - compression
  - mlx
  - mlx-my-repo
license: mit
name: cerebras/GLM-4.5-Air-REAP-82B-A12B
description: >
  This model was obtained by uniformly pruning 25% of experts in GLM-4.5-Air
  using the REAP method.
readme: |
  https://huggingface.co/cerebras/GLM-4.5-Air-REAP-82B-A12B/main/README.md
license_link: https://huggingface.co/zai-org/GLM-4.5-Air/blob/main/LICENSE
pipeline_tag: text-generation
base_model: cerebras/GLM-4.5-Air-REAP-82B-A12B

garrison/GLM-4.5-Air-REAP-82B-A12B-mlx-8Bit

The Model garrison/GLM-4.5-Air-REAP-82B-A12B-mlx-8Bit was converted to MLX format from cerebras/GLM-4.5-Air-REAP-82B-A12B using mlx-lm version 0.28.3.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("garrison/GLM-4.5-Air-REAP-82B-A12B-mlx-8Bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)