metadata
license: mit
base_model: ultralytics/yolov8n-cls
tags:
- ultralytics
- yolo
- vision
- image-classification
- pytorch
- insects
- pollinators
- biodiversity
- ecology
- conservation
datasets:
- custom
language:
- en
metrics:
- accuracy
model-index:
- name: pollinator-classifier
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: Custom Pollinator Insects Dataset
type: custom
metrics:
- type: accuracy
value: 0.9207
name: Top-1 Accuracy
- type: accuracy
value: 0.9912
name: Top-5 Accuracy
pipeline_tag: image-classification
Pollinator Insect Classifier 🔬
High-precision classifier for 10 pollinator insect species using YOLOv8 Nano with 92.07% accuracy.
Quick Start
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
# Download model
model_path = hf_hub_download("leonelgv/pollinator-classifier", "yolo8n.pt")
# Load and predict
model = YOLO(model_path)
results = model("insect_image.jpg")
See files in this repository for complete usage examples and training details.