|
|
--- |
|
|
base_model: EpistemeAI/metatune-gpt20b-R1.1 |
|
|
tags: |
|
|
- text-generation-inference |
|
|
- transformers |
|
|
- unsloth |
|
|
- gpt_oss |
|
|
- mlx |
|
|
license: apache-2.0 |
|
|
language: |
|
|
- en |
|
|
datasets: |
|
|
- EpistemeAI/recursive_self_improvement_dataset |
|
|
library_name: mlx |
|
|
pipeline_tag: text-generation |
|
|
--- |
|
|
|
|
|
# metatune-gpt20b-R1.1-qx86-hi-mlx |
|
|
|
|
|
Metrics aren't everything. The qx86-hi is more fun than q8-hi. Enjoy the quant. |
|
|
|
|
|
Sample output: |
|
|
|
|
|
```bash |
|
|
┌───────────────────────┐ ┌───────────────┐ ┌──────────────┐ |
|
|
│ UI / CLI │<------>| Agent |<-------->| Provider │ |
|
|
└───────────────────────┘ ├───────────────┤ └──────────────┘ |
|
|
│ Thread work │ |
|
|
│ HTTP, FILE, │ |
|
|
│ TOOL, etc. │ |
|
|
└───────┬───────┘ |
|
|
│ DB logging (SQLite) |
|
|
▼ |
|
|
┌───────────────────────┐ |
|
|
│ SQLite LOG DB │ |
|
|
└───────────────────────┘ |
|
|
|
|
|
┌───────────────────────────────┐ |
|
|
│ PostgreSQL (orchestrator) │ |
|
|
└───────────────────────────────┘ |
|
|
+---------------------------+ +--------------------------+ |
|
|
| PL/Perl functions | | Tables & triggers | |
|
|
+---------------------------+ +--------------------------+ |
|
|
|
|
|
``` |
|
|
It's really hard to line up ASCII code, but looked good on screen |
|
|
|
|
|
This model [metatune-gpt20b-R1.1-qx86-hi-mlx](https://huggingface.co/nightmedia/metatune-gpt20b-R1.1-qx86-hi-mlx) was |
|
|
converted to MLX format from [EpistemeAI/metatune-gpt20b-R1.1](https://huggingface.co/EpistemeAI/metatune-gpt20b-R1.1) |
|
|
using mlx-lm version **0.28.4**. |
|
|
|
|
|
## Use with mlx |
|
|
|
|
|
```bash |
|
|
pip install mlx-lm |
|
|
``` |
|
|
|
|
|
```python |
|
|
from mlx_lm import load, generate |
|
|
|
|
|
model, tokenizer = load("metatune-gpt20b-R1.1-qx86-hi-mlx") |
|
|
|
|
|
prompt = "hello" |
|
|
|
|
|
if tokenizer.chat_template is not None: |
|
|
messages = [{"role": "user", "content": prompt}] |
|
|
prompt = tokenizer.apply_chat_template( |
|
|
messages, add_generation_prompt=True |
|
|
) |
|
|
|
|
|
response = generate(model, tokenizer, prompt=prompt, verbose=True) |
|
|
``` |
|
|
|