Spaces:
Paused
Paused
File size: 6,956 Bytes
83f4660 a686dc2 9f5d9ec 87cc7c1 a686dc2 45ca480 21b317e a686dc2 c2f9d4f 87cc7c1 032bbdc a686dc2 c2f9d4f bb09ff7 548cde0 c2f9d4f a686dc2 99d4535 c2f9d4f a686dc2 c2f9d4f a686dc2 c2f9d4f 318739d c2f9d4f 318739d c2f9d4f 318739d c2f9d4f 318739d c2f9d4f a686dc2 70c3e5d 99d4535 318739d a686dc2 318739d 45ca480 83f4660 a686dc2 c610d2c 99d4535 a686dc2 45ca480 318739d a686dc2 318739d a686dc2 318739d 9f03507 a686dc2 318739d a686dc2 318739d a686dc2 318739d a686dc2 318739d 83f4660 318739d 83f4660 87cc7c1 83f4660 a686dc2 318739d 83f4660 b692976 83f4660 a686dc2 83f4660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import gradio as gr
import torch
import numpy as np
import random
import os
import yaml
from typing import Optional
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import snapshot_download
from huggingface_hub import hf_hub_download
import shutil
import sys
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
get_device,
calculate_padding,
load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
APP_HOME = Path(os.environ.get("APP_HOME", "/app"))
config_file_path = APP_HOME / "configs/ltxv-13b-0.9.8-distilled-fp8.yaml"
with open(config_file_path, "r") as file:
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
HF_HOME_CACHE = Path(os.getenv("HF_HOME", "/data/.cache/huggingface"))
models_dir = Path("/data/ltx_models")
LTX_REPO = "Lightricks/LTX-Video"
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
MAX_NUM_FRAMES = 257
FPS = 30.0
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.bfloat16 if DEVICE == "cuda" and torch.cuda.is_bf16_supported() else torch.float16
# --- Global variables for loaded models ---
pipeline_instance = None
latent_upsampler_instance = None
Path(models_dir).mkdir(parents=True, exist_ok=True)
print("Downloading models (if not present)...")
distilled_model_actual_path = hf_hub_download(
repo_id=LTX_REPO,
filename=PIPELINE_CONFIG_YAML["checkpoint_path"],
local_dir=models_dir,
#local_dir_use_symlinks=False,
cache_dir=HF_HOME_CACHE,
)
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
print(f"Distilled model path: {distilled_model_actual_path}")
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
spatial_upscaler_actual_path = hf_hub_download(
repo_id=LTX_REPO,
filename=SPATIAL_UPSCALER_FILENAME,
local_dir=models_dir,
#local_dir_use_symlinks=False,
cache_dir=HF_HOME_CACHE,
)
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")
print("Creating LTX Video pipeline on CPU...")
pipeline_instance = create_ltx_video_pipeline(
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
precision=PIPELINE_CONFIG_YAML["precision"],
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
sampler=PIPELINE_CONFIG_YAML["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
)
print("LTX Video pipeline created on CPU.")
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
print("Creating latent upsampler on CPU...")
latent_upsampler_instance = create_latent_upsampler(
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
device="cpu"
)
print("Latent upsampler created on CPU.")
target_inference_device = "cuda"
print(f"Target inference device: {target_inference_device}")
pipeline_instance.to(target_inference_device)
if latent_upsampler_instance:
latent_upsampler_instance.to(target_inference_device)
# --- FUNÇÃO DE GERAÇÃO PRINCIPAL ---
def generate(
prompt: str, image_input: Optional[str],
target_height: int, target_width: int, num_frames: int, seed: int,
progress=gr.Progress(track_tqdm=True)
):
seed_everething(seed)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
height_padded = ((target_height - 1) // 32 + 1) * 32
width_padded = ((target_width - 1) // 32 + 1) * 32
padding_values = calculate_padding(target_height, target_width, height_padded, width_padded)
conditioning_items = None
if image_input:
progress(0.1, desc="Preparando imagem de condição...")
media_tensor = load_media_file(
media_path=image_input, height=target_height, width=target_width,
max_frames=1, padding=padding_values, just_crop=True
)
conditioning_items = [ConditioningItem(media_tensor.to(DEVICE, dtype=DTYPE), 0, 1.0)]
multi_scale_pipeline = LTXMultiScalePipeline(pipeline_instance, latent_upsampler_instance)
call_kwargs = {
"prompt": prompt, "negative_prompt": "worst quality...",
"height": target_height, "width": target_width, "num_frames": num_frames, "frame_rate": int(FPS),
"generator": generator, "output_type": "pt",
"conditioning_items": conditioning_items,
**PIPELINE_CONFIG_YAML
}
progress(0.3, desc="Gerando vídeo...")
result_tensor = multi_scale_pipeline(**call_kwargs).images
pad_left, pad_right, pad_top, pad_bottom = padding_values
slice_h_end = -pad_bottom if pad_bottom > 0 else None
slice_w_end = -pad_right if pad_right > 0 else None
result_tensor = result_tensor[:, :, :num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
progress(0.9, desc="Exportando vídeo...")
output_video_path = tempfile.mktemp(suffix=".mp4")
video_np = result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
video_np = np.clip(video_np * 255, 0, 255).astype("uint8")
export_to_video(video_np, str(output_video_path), fps=24)
return output_video_path
# --- UI GRADIO ---
with gr.Blocks(title="LTX-Video (Final)", theme=gr.themes.Soft()) as demo:
gr.HTML("<h1>LTX-Video - Geração de Vídeo Multi-Scale (FP8)</h1>")
with gr.Row():
with gr.Column(scale=1):
image_in = gr.Image(type="filepath", label="Imagem de Entrada (Opcional)")
prompt_in = gr.Textbox(label="Prompt", lines=4, placeholder="Ex: a cinematic shot...")
with gr.Accordion("Parâmetros", open=True):
height_in = gr.Slider(label="Altura", minimum=256, maximum=1024, step=32, value=480)
width_in = gr.Slider(label="Largura", minimum=256, maximum=1280, step=32, value=832)
frames_in = gr.Slider(label="Frames", minimum=17, maximum=161, step=8, value=97)
seed_in = gr.Number(label="Seed", value=42, precision=0)
run_button = gr.Button("Gerar Vídeo", variant="primary")
with gr.Column(scale=1):
video_out = gr.Video(label="Vídeo Gerado")
run_button.click(
fn=generate,
inputs=[prompt_in, image_in, height_in, width_in, frames_in, seed_in],
outputs=[video_out],
)
if __name__ == "__main__":
demo.queue().launch(
server_name=os.getenv("GRADIO_SERVER_NAME", "0.0.0.0"),
server_port=int(os.getenv("GRADIO_SERVER_PORT", "7861")),
show_error=True,
) |