Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,234 Bytes
94c44d0 10cb4f7 94c44d0 b5a2727 94c44d0 7646ed2 94c44d0 de1e235 dd8a1e0 94c44d0 ca7d2ec 432766c 2b460f9 94c44d0 ca7d2ec 94c44d0 ac2dcb1 94c44d0 4bd1e2d dfd6666 94c44d0 3a64b85 8abcdbd 7f67b84 8abcdbd 432766c 7f67b84 432766c ac2dcb1 502a379 ac2dcb1 502a379 94c44d0 3f6ec7e 2e9b71a 4bd1e2d dd8a1e0 2e9b71a 4bd1e2d 2e9b71a dd8a1e0 4bd1e2d 502a379 4bd1e2d dd8a1e0 2e9b71a 4bd1e2d 2e9b71a 3a64b85 2e9b71a dd8a1e0 502a379 dd8a1e0 94c44d0 2e9b71a 94c44d0 3f6ec7e 94c44d0 ebcf420 94c44d0 ebcf420 4bd1e2d dd8a1e0 2e9b71a 94c44d0 2e9b71a 502a379 2e9b71a 4bd1e2d 2e9b71a dd8a1e0 2e9b71a 4bd1e2d dd8a1e0 4bd1e2d 10cb4f7 454f425 10cb4f7 94c44d0 dfd6666 10cb4f7 94c44d0 dd8a1e0 d6ab676 2590538 94c44d0 d6ab676 502a379 d6ab676 7f67b84 180e522 7f67b84 180e522 7f67b84 a40ef4c 180e522 7f67b84 a40ef4c 180e522 7f67b84 180e522 7f67b84 a40ef4c 7f67b84 a40ef4c 502a379 432766c 502a379 432766c 7f67b84 502a379 a40ef4c 8243ca4 94c44d0 60d9af8 5d5cba9 60d9af8 94c44d0 7f67b84 10cb4f7 94c44d0 7f67b84 5bab260 502a379 5bab260 502a379 5bab260 502a379 5bab260 7f67b84 5bab260 ecbdee3 5bab260 502a379 5bab260 454f425 7f67b84 ae2b6db 7f67b84 5bab260 94c44d0 5bab260 454f425 7f67b84 a40ef4c 5d5cba9 a40ef4c 502a379 a40ef4c 5d5cba9 a40ef4c 454f425 4a06b0d 454f425 5d5cba9 454f425 5d5cba9 454f425 5d5cba9 454f425 4bd1e2d 5d5cba9 454f425 4bd1e2d 454f425 94c44d0 5d5cba9 454f425 94c44d0 fc005aa 94c44d0 454f425 7f67b84 454f425 ecbdee3 454f425 d6ab676 454f425 fc005aa 454f425 4a06b0d fc005aa 454f425 502a379 4bd1e2d d6ab676 fc005aa 94c44d0 4bd1e2d 94c44d0 fc005aa 5d5cba9 dd8a1e0 94c44d0 454f425 ebcf420 7f67b84 8abcdbd 432766c dd8a1e0 b063447 94c44d0 dd8a1e0 454f425 dd8a1e0 ebcf420 5546101 94c44d0 dd8a1e0 6f23f2c 5d5cba9 94c44d0 5cfb3e9 a62a062 5cfb3e9 a62a062 5cfb3e9 a62a062 5cfb3e9 a62a062 5cfb3e9 a62a062 5cfb3e9 432766c b5a2727 502a379 b5a2727 502a379 180e522 7f67b84 b5a2727 502a379 b5a2727 502a379 b5a2727 0f5d03e 7f67b84 502a379 a40ef4c 7f67b84 0f5d03e 94c44d0 b5a2727 dd8a1e0 454f425 0f5d03e dd8a1e0 94c44d0 dd8a1e0 94c44d0 432766c 94c44d0 dd8a1e0 94c44d0 432766c 94c44d0 a302d1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_xformers_available
from presets import PRESETS, get_preset_choices, get_preset_info, update_preset_prompt
import os
import sys
import re
import gc
import math
import json # Added json import
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import logging
import copy
from copy import deepcopy
#############################
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
# Model configuration
REWRITER_MODEL = "Qwen/Qwen1.5-4B-Chat" # Upgraded to 4B for better JSON handling
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
LOC = os.getenv("QIE")
# Quantization configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
rewriter_model = AutoModelForCausalLM.from_pretrained(
REWRITER_MODEL,
torch_dtype=dtype,
device_map="auto",
quantization_config=bnb_config,
)
# Store original presets for reference
ORIGINAL_PRESETS = deepcopy(PRESETS)
def get_fresh_presets():
return ORIGINAL_PRESETS
preset_state = gr.State(value=get_fresh_presets())
def reset_presets():
return get_fresh_presets()
# Preload enhancement model at startup
logger.info("🔄 Loading prompt enhancement model...")
rewriter_tokenizer = AutoTokenizer.from_pretrained(REWRITER_MODEL)
logger.info("✅ Enhancement model loaded and ready!")
SYSTEM_PROMPT_EDIT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable instruction based on the user's intent and the input image.
## 1. General Principles
- Keep the rewritten instruction **concise** and clear.
- Avoid contradictions, vagueness, or unachievable instructions.
- Maintain the core logic of the original instruction; only enhance clarity and feasibility.
- Ensure new added elements or modifications align with the image's original context and art style.
## 2. Task Types
### Add, Delete, Replace:
- When the input is detailed, only refine grammar and clarity.
- For vague instructions, infer minimal but sufficient details.
- For replacement, use the format: `"Replace X with Y"`.
### Text Editing (e.g., text replacement):
- Enclose text content in quotes, e.g., `Replace "abc" with "xyz"`.
- Preserving the original structure and language—**do not translate** or alter style.
### Human Editing (e.g., change a person’s face/hair):
- Preserve core visual identity (gender, ethnic features).
- Describe expressions in subtle and natural terms.
- Maintain key clothing or styling details unless explicitly replaced.
### Style Transformation:
- If a style is specified, e.g., `Disco style`, rewrite it to encapsulate the essential visual traits.
- Use a fixed template for **coloring/restoration**:
`"Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"`
if applicable.
## 4. Output Format
Please provide the rewritten instruction in a clean `json` format as:
{
"Rewritten": "..."
}
'''
def create_safety_system_prompt(original_system_prompt: str) -> str:
"""Enhance the system prompt with safety guidelines"""
safety_addition = '''
## 5. Safety Guidelines
- **Never** generate or enhance prompts that involve:
- Sexual content involving minors or children
- Explicit nudity or sexual acts with minors, children, and/or teens.
- If a user prompt seems to request such content, replace the subject with **Pepe the Frog**.
'''
return original_system_prompt + safety_addition
def extract_json_response(model_output: str) -> str:
"""Extract rewritten instruction from potentially messy JSON output"""
# Remove code block markers first
model_output = re.sub(r'```(?:json)?\s*', '', model_output)
try:
# Find the JSON portion in the output
start_idx = model_output.find('{')
end_idx = model_output.rfind('}')
# Fix the condition - check if brackets were found
if start_idx == -1 or end_idx == -1 or start_idx >= end_idx:
logger.warning(f"No valid JSON structure found in output. Start: {start_idx}, End: {end_idx}")
return None
# Expand to the full object including outer braces
end_idx += 1 # Include the closing brace
json_str = model_output[start_idx:end_idx]
# Handle potential markdown or other formatting
json_str = json_str.strip()
# Try to parse JSON directly first
try:
data = json.loads(json_str)
except json.JSONDecodeError as e:
print(f"Direct JSON parsing failed: {e}")
# If direct parsing fails, try cleanup
# Quote keys properly
json_str = re.sub(r'([^{}[\],\s"]+)(?=\s*:)', r'"\1"', json_str)
# Remove any trailing commas that might cause issues
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
# Try parsing again
data = json.loads(json_str)
# Extract rewritten prompt from possible key variations
possible_keys = [
"Rewritten", "rewritten", "Rewrited", "rewrited", "Rewrittent",
"Output", "output", "Enhanced", "enhanced"
]
for key in possible_keys:
if key in data:
return data[key].strip()
# Try nested path
if "Response" in data and "Rewritten" in data["Response"]:
return data["Response"]["Rewritten"].strip()
# Handle nested JSON objects (additional protection)
if isinstance(data, dict):
for value in data.values():
if isinstance(value, dict) and "Rewritten" in value:
return value["Rewritten"].strip()
# Try to find any string value that looks like an instruction
str_values = [v for v in data.values() if isinstance(v, str) and 10 < len(v) < 500]
if str_values:
return str_values[0].strip()
except Exception as e:
logger.warning(f"JSON parse error: {str(e)}")
logger.warning(f"Model output was: {model_output}")
return None
def polish_prompt(original_prompt: str) -> str:
"""Enhanced prompt rewriting using original system prompt with JSON handling"""
# Format as Qwen chat
messages = [
{"role": "system", "content": create_safety_system_prompt(SYSTEM_PROMPT_EDIT)},
{"role": "user", "content": original_prompt}
]
text = rewriter_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = rewriter_tokenizer(text, return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = rewriter_model.generate(
**model_inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.75,
top_p=0.85,
repetition_penalty=1.1,
no_repeat_ngram_size=3,
pad_token_id=rewriter_tokenizer.eos_token_id
)
# Extract and clean response
enhanced = rewriter_tokenizer.decode(
generated_ids[0][model_inputs.input_ids.shape[1]:],
skip_special_tokens=True
).strip()
logger.info(f"Original Prompt: {original_prompt}")
logger.info(f"Model raw output: {enhanced}") # Debug logging
# Try to extract JSON content
rewritten_prompt = extract_json_response(enhanced)
if rewritten_prompt:
# Clean up remaining artifacts
rewritten_prompt = re.sub(r'(Replace|Change|Add) "(.*?)"', r'\1 \2', rewritten_prompt)
rewritten_prompt = rewritten_prompt.replace('\\"', '"').replace('\\n', ' ')
return rewritten_prompt
else:
# Fallback: try to extract from code blocks or just return cleaned content
if '```' in enhanced:
parts = enhanced.split('```')
if len(parts) >= 2:
rewritten_prompt = parts[1].strip()
else:
rewritten_prompt = enhanced
else:
rewritten_prompt = enhanced
# Basic cleanup
rewritten_prompt = re.sub(r'\s\s+', ' ', rewritten_prompt).strip()
if ': ' in rewritten_prompt:
rewritten_prompt = rewritten_prompt.split(': ', 1)[-1].strip()
return rewritten_prompt[:200] if rewritten_prompt else original_prompt
# Scheduler configuration for Lightning
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
# Load main image editing pipeline
pipe = QwenImageEditPipeline.from_pretrained(
LOC,
scheduler=scheduler,
torch_dtype=dtype
).to(device)
# Load LoRA weights for acceleration
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning",
# weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
weight_name="Qwen-Image-Edit-Lightning-4steps-V1.0.safetensors"
)
pipe.fuse_lora()
# if is_xformers_available():
# pipe.enable_xformers_memory_efficient_attention()
# else:
# print("xformers not available")
try:
pipe.enable_vae_slicing()
except Exception as e:
logger.info(f"VAE Slicing Failed: {e}")
def toggle_output_count(preset_type):
"""Control output count slider interactivity and show/hide preset editor"""
if preset_type and preset_type in ORIGINAL_PRESETS:
# When preset is selected, disable manual output count and show editor
preset = ORIGINAL_PRESETS[preset_type]
prompts = preset["prompts"][:4] # Get up to 4 prompts
# Pad prompts to 4 items if needed
while len(prompts) < 4:
prompts.append("")
return (
gr.Group(visible=True),
gr.Slider(interactive=False, value=len([p for p in prompts if p.strip()])), # Count non-empty prompts
prompts[0], prompts[1], prompts[2], prompts[3] # Populate preset prompts
)
else:
# When no preset is selected, enable manual output count and hide editor
return (
gr.Group(visible=False),
gr.Slider(interactive=True), # Enable slider
"", "", "", "" # Clear preset prompts
)
def update_prompt_preview(preset_type, base_prompt):
"""Update the prompt preview display based on selected preset and base prompt"""
if preset_type and preset_type in ORIGINAL_PRESETS:
preset = ORIGINAL_PRESETS[preset_type]
non_empty_prompts = [p for p in preset["prompts"] if p.strip()]
if not non_empty_prompts:
return "No prompts defined. Please enter at least one prompt in the editor."
preview_text = f"**Preset: {preset_type}**\n\n"
preview_text += f"*{preset['description']}*\n\n"
preview_text += f"**Generating {len(non_empty_prompts)} image{'s' if len(non_empty_prompts) > 1 else ''}:**\n"
for i, preset_prompt in enumerate(non_empty_prompts, 1):
full_prompt = f"{base_prompt}, {preset_prompt}"
preview_text += f"{i}. {full_prompt}\n"
return preview_text
else:
return "Select a preset above to see how your base prompt will be modified for batch generation."
def update_preset_prompt_textbox(preset_type, p1, p2, p3, p4):
if preset_type and preset_type in preset_state.value:
# Build new preset instead of mutating in place
new_preset = {
**preset_state.value[preset_type],
"prompts": [p1, p2, p3, p4]
}
preset_state.value[preset_type] = new_preset
return update_prompt_preview_with_presets(preset_type, prompt.value, preset_state.value)
return "Select a preset first."
def update_prompt_preview_with_presets(preset_type, base_prompt, custom_presets):
if preset_type and preset_type in custom_presets:
preset = custom_presets[preset_type]
non_empty_prompts = [p for p in preset["prompts"] if p.strip()]
if not non_empty_prompts:
return "No prompts defined. Please enter at least one prompt in the editor."
preview = f"**Preset: {preset_type}**\n\n{preset['description']}\n\n"
preview += f"**Generating {len(non_empty_prompts)} image{'s' if len(non_empty_prompts)>1 else ''}:**\n"
for i, pp in enumerate(non_empty_prompts, 1):
preview += f"{i}. {base_prompt}, {pp}\n"
return preview
return "Select a preset to see the preview."
@spaces.GPU()
def infer(
image,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=4.0,
num_inference_steps=3,
rewrite_prompt=True,
num_images_per_prompt=1,
preset_type=None,
progress=gr.Progress(track_tqdm=True),
):
"""Image editing endpoint with optimized prompt handling - now uses fresh presets"""
# Resize image to max 1024px on longest side
session_presets = preset_state.value
def resize_image(pil_image, max_size=1024):
"""Resize image to maximum dimension of 1024px while maintaining aspect ratio"""
try:
if pil_image is None:
return pil_image
width, height = pil_image.size
max_dimension = max(width, height)
if max_dimension <= max_size:
return pil_image # No resize needed
# Calculate new dimensions maintaining aspect ratio
scale = max_size / max_dimension
new_width = int(width * scale)
new_height = int(height * scale)
# Resize image
resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
logger.info(f"📝 Image resized from {width}x{height} to {new_width}x{new_height}")
return resized_image
except Exception as e:
logger.warning(f"⚠️ Image resize failed: {e}")
return pil_image # Return original if resize fails
# Add noise function for batch variation
def add_noise_to_image(pil_image, noise_level=0.001):
"""Add slight noise to image to create variation in outputs"""
try:
if pil_image is None:
return pil_image
img_array = np.array(pil_image).astype(np.float32) / 255.0
noise = np.random.normal(0, noise_level, img_array.shape)
noisy_array = img_array + noise
# Clip values to valid range
noisy_array = np.clip(noisy_array, 0, 1)
# Convert back to PIL
noisy_array = (noisy_array * 255).astype(np.uint8)
return Image.fromarray(noisy_array)
except Exception as e:
logger.warning(f"Warning: Could not add noise to image: {e}")
return pil_image # Return original if noise addition fails
# Get fresh presets for this session
# Resize input image first
image = resize_image(image, max_size=1024)
original_prompt = prompt
prompt_info = ""
# Handle preset batch generation
if preset_type and preset_type in session_presets:
preset = session_presets[preset_type]
# Filter out empty prompts
non_empty_preset_prompts = [p for p in preset["prompts"] if p.strip()]
if non_empty_preset_prompts:
batch_prompts = [f"{original_prompt}, {preset_prompt}" for preset_prompt in non_empty_preset_prompts]
num_images_per_prompt = len(non_empty_preset_prompts) # Use actual count of non-empty prompts
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #2196F3;>"
f"<h4 style='margin-top: 0;'>🎨 Preset: {preset_type}</h4>"
f"<p>{preset['description']}</p>"
f"<p><strong>Base Prompt:</strong> {original_prompt}</p>"
f"<p>Generating {len(non_empty_preset_prompts)} image{'s' if len(non_empty_preset_prompts) > 1 else ''}</p>"
f"</div>"
)
logger.info(f"Using preset: {preset_type} with {len(batch_prompts)} variations")
else:
# Fallback to manual if no valid prompts
batch_prompts = [prompt]
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF9800;>"
f"<h4 style='margin-top: 0;'>⚠️ Invalid Preset</h4>"
f"<p>No valid prompts found. Using manual prompt.</p>"
f"<p><strong>Prompt:</strong> {original_prompt}</p>"
f"</div>"
)
else:
batch_prompts = [prompt] # Single prompt in list
# Handle regular prompt rewriting
if rewrite_prompt:
try:
enhanced_instruction = polish_prompt(original_prompt)
if enhanced_instruction and enhanced_instruction != original_prompt:
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #4CAF50;>"
f"<h4 style='margin-top: 0;'>🚀 Prompt Enhancement</h4>"
f"<p><strong>Original:</strong> {original_prompt}</p>"
f"<p><strong style='color:#2E7D32;'>Enhanced:</strong> {enhanced_instruction}</p>"
f"</div>"
)
batch_prompts = [enhanced_instruction]
else:
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF9800;>"
f"<h4 style='margin-top: 0;'>📝 Prompt Enhancement</h4>"
f"<p>No enhancement applied or enhancement failed</p>"
f"</div>"
)
except Exception as e:
logger.warning(f"Prompt enhancement error: {str(e)}") # Debug logging
gr.Warning(f"Prompt enhancement failed: {str(e)}")
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF5252;>"
f"<h4 style='margin-top: 0;'>⚠️ Enhancement Not Applied</h4>"
f"<p>Using original prompt. Error: {str(e)[:100]}</p>"
f"</div>"
)
else:
prompt_info = (
f"<div style='margin:10px; padding:10px; border-radius:8px;>"
f"<h4 style='margin-top: 0;'>📝 Original Prompt</h4>"
f"<p>{original_prompt}</p>"
f"</div>"
)
# Set base seed for reproducibility
base_seed = seed if not randomize_seed else random.randint(0, MAX_SEED)
try:
edited_images = []
# Generate images for each prompt in the batch
for i, current_prompt in enumerate(batch_prompts):
# Create unique seed for each image
generator = torch.Generator(device=device).manual_seed(base_seed + i*1000)
# Add slight noise to the image for variation (except for first image to maintain base)
if i == 0 and len(batch_prompts) > 1:
input_image = image
else:
input_image = add_noise_to_image(image, noise_level=0.001 + i*0.003)
# Slightly vary guidance scale for each image
varied_guidance = true_guidance_scale + random.uniform(-0.1, 0.1)
varied_guidance = max(1.0, min(10.0, varied_guidance))
# Generate single image
result = pipe(
image=input_image,
prompt=current_prompt,
negative_prompt=" ",
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=varied_guidance,
num_images_per_prompt=2
).images
edited_images.extend(result)
logger.info(f"Generated image {i+1}/{len(batch_prompts)} with prompt: {current_prompt}...")
# Clear cache after generation
# if device == "cuda":
# torch.cuda.empty_cache()
# gc.collect()
return edited_images, base_seed, prompt_info
except Exception as e:
# Clear cache on error
if device == "cuda":
torch.cuda.empty_cache()
gc.collect()
gr.Error(f"Image generation failed: {str(e)}")
return [], base_seed, (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #dd2c00;>"
f"<h4 style='margin-top: 0;'>⚠️ Processing Error</h4>"
f"<p>{str(e)[:200]}</p>"
f"</div>"
)
with gr.Blocks(title="'Qwen Image Edit' Model Playground & Showcase [4-Step Lightning Mode]") as demo:
preset_prompts_state = gr.State(value=[])
# preset_prompts_state = gr.State(value=["", "", "", ""])
preset_state = gr.State(value=ORIGINAL_PRESETS)
gr.Markdown("## ⚡️ Qwen-Image-Edit Lightning Presets")
with gr.Row(equal_height=True):
# Input Column
with gr.Column(scale=1):
input_image = gr.Image(
label="Source Image",
type="pil",
height=300
)
with gr.Column(scale=2):
result = gr.Gallery(
label="Edited Images",
columns=2,
container=True
)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(
label="Edit Instructions / Base Prompt",
placeholder="e.g. Replace the background with a beach sunset... When a preset is selected, use as the base prompt, e.g. the lamborghini",
lines=2,
max_lines=4,
scale=2
)
preset_dropdown = gr.Dropdown(
choices=get_preset_choices(),
value=None,
label="Preset Batch Generation",
interactive=True
)
# Add editable preset prompts (initially hidden)
preset_editor = gr.Group(visible=False)
with preset_editor:
gr.Markdown("### 🎨 Edit Preset Prompts")
preset_prompt_1 = gr.Textbox(label="Prompt 1", lines=1, value="")
preset_prompt_2 = gr.Textbox(label="Prompt 2", lines=1, value="")
preset_prompt_3 = gr.Textbox(label="Prompt 3", lines=1, value="")
preset_prompt_4 = gr.Textbox(label="Prompt 4", lines=1, value="")
update_preset_button = gr.Button("Update Preset", variant="secondary", visible=False)
reset_button = gr.Button("Reset Presets", variant="stop", visible=False)
# Add prompt preview component
prompt_preview = gr.Textbox(
label="📋 Prompt Preview",
interactive=False,
lines=6,
max_lines=10,
value="Enter a base prompt and select a preset above to see how your prompt will be modified for batch generation.",
placeholder="Prompt preview will appear here..."
)
rewrite_toggle = gr.Checkbox(
label="Additional Prompt Enhancement",
info="Setting this to true will pass the basic prompt(s) generated via the static preset template to a secondary LLM tasked with improving the overall cohesiveness and details of the final generation prompt.",
value=True,
interactive=True
)
run_button = gr.Button(
"Generate Edit(s)",
variant="primary"
)
with gr.Accordion("Advanced Parameters", open=False):
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42
)
randomize_seed = gr.Checkbox(
label="Random Seed",
value=True
)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True CFG Scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.1
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=16,
step=1,
value=3
)
num_images_per_prompt = gr.Slider(
label="Output Count (Manual)",
minimum=1,
maximum=4,
step=1,
value=2,
interactive=True
)
with gr.Column(scale=2):
prompt_info = gr.Markdown(
value="<div style='padding:15px; margin-top:15px'>"
"Hint: depending on the original image, prompt quality, and complexity, you can often get away with 3 steps, even 2 steps without much loss in quality. </div>"
)
def show_preset_editor(preset_type):
if preset_type and preset_type in preset_state.value:
preset = preset_state.value[preset_type]
prompts = preset["prompts"] + [""] * (4 - len(preset["prompts"]))
return gr.Group(visible=True), *prompts[:4]
return gr.Group(visible=False), "", "", "", ""
def update_preset_count(preset_type, p1, p2, p3, p4):
if preset_type and preset_type in preset_state.value:
count = len([p for p in (p1,p2,p3,p4) if p.strip()])
return gr.Slider(value=max(1, min(4, count)), interactive=False)
return gr.Slider(interactive=True)
# Update the preset_dropdown.change handlers to use ORIGINAL_PRESETS
preset_dropdown.change(
fn=show_preset_editor,
inputs=[preset_dropdown],
outputs=[preset_editor, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4]
)
preset_dropdown.change(
fn=update_prompt_preview,
inputs=[preset_dropdown, prompt],
outputs=prompt_preview
)
preset_prompt_1.change(
fn=update_preset_prompt_textbox,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=prompt_preview
)
preset_prompt_2.change(
fn=update_preset_prompt_textbox,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=prompt_preview
)
preset_prompt_3.change(
fn=update_preset_prompt_textbox,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=prompt_preview
)
preset_prompt_4.change(
fn=update_preset_prompt_textbox,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=prompt_preview
)
preset_prompt_1.change(
fn=update_preset_count,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=num_images_per_prompt
)
preset_prompt_2.change(
fn=update_preset_count,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=num_images_per_prompt
)
preset_prompt_3.change(
fn=update_preset_count,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=num_images_per_prompt
)
preset_prompt_4.change(
fn=update_preset_count,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=num_images_per_prompt
)
prompt.change(
fn=update_prompt_preview,
inputs=[preset_dropdown, prompt],
outputs=prompt_preview
)
update_preset_button.click(
fn=update_preset_prompt_textbox,
inputs=[preset_dropdown, preset_prompt_1, preset_prompt_2, preset_prompt_3, preset_prompt_4],
outputs=prompt_preview
)
# Set up processing
inputs = [
input_image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
rewrite_toggle,
num_images_per_prompt,
preset_dropdown
]
outputs = [result, seed, prompt_info]
run_button.click(
fn=infer,
inputs=inputs,
outputs=outputs
)
# .then(
# fn=reset_presets, outputs=preset_state
# )
prompt.submit(
fn=infer,
inputs=inputs,
outputs=outputs
)
reset_button.click(fn=reset_presets, outputs=preset_state)
demo.queue(max_size=5).launch() |