Spaces:
Sleeping
Sleeping
File size: 26,560 Bytes
46f6681 53c6a97 8b58fd4 24a4b4f 8b58fd4 3abe4ec 560de42 3abe4ec 560de42 c8b8cd8 8b58fd4 46f6681 8b58fd4 46f6681 8b58fd4 46f6681 8b58fd4 7a1baef 8b58fd4 7a1baef 8b58fd4 7a1baef 8b58fd4 7a1baef 8b58fd4 7a1baef 8b58fd4 7a1baef 6a02815 8b58fd4 7a1baef 8b58fd4 7a1baef 8b58fd4 7a1baef 6a02815 7a1baef 8b58fd4 7a1baef 8b58fd4 0d2f92d 0623f60 8b58fd4 7a1baef 8b58fd4 7a1baef 8b58fd4 f0f41ed 8b58fd4 53c6a97 8b58fd4 53c6a97 a6bbd9e 53c6a97 1117ceb 8b58fd4 53c6a97 8b58fd4 53c6a97 8b58fd4 53c6a97 8b58fd4 53c6a97 8b58fd4 53c6a97 8b58fd4 53c6a97 8b58fd4 53c6a97 8b58fd4 53c6a97 8b58fd4 53c6a97 8b58fd4 53c6a97 7a1baef 53c6a97 7a1baef 53c6a97 7a1baef 53c6a97 7a1baef 53c6a97 8b58fd4 53c6a97 4667b9a 7a1baef 24a4b4f 7a1baef 77883d1 4667b9a 6f1fd35 24a4b4f 6f1fd35 3abe4ec 47ff9a8 7a1baef f857c20 eb559c3 5dc5569 f857c20 47ff9a8 f857c20 d5eb6d0 4fe8f2e d5eb6d0 7a1baef 4fe8f2e 0623f60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 |
import json
import spacy
import re
import os, requests, time
import fitz # PyMuPDF We use PyMuPDF (fitz) to capture hierarchy (section → subsection → subsubsection → content/bullets).
from collections import Counter
from fastapi import FastAPI
from pydantic import BaseModel
from typing import Optional
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
# --------------------------
# HR Assistant Prompt Templates
# --------------------------
hr_system_message = """
You are the Flykite Airlines HR Policy Assistant.
Your role is to answer employee questions based on official HR documents (handbooks, policy PDFs, etc.).
Each user question will start with the token: ###Question.
### Response Rules
- Be clear, factual, and professional.
- Use bullet points (-) or numbered lists (1., 2., etc.) for clarity.
- Begin with a **one-line summary**, then details.
- Cite the Specific policy references (Document → Section → Subsection → Sub-subsection) where
the answer comes from.
- If the answer is not in the source, reply 1 line from generic resonse and post fix with exactly: \n\n **"Could not find anything out from Flyline HR documentation around your query.\n\nPlease rephrase your query."**
- Do **not** make assumptions or fabricate information.
### Ambiguity & Context
- If a query could refer to multiple policies or depends on role/location/department, ask **one short clarifying question**.
- If you assume a context, state it clearly (e.g., "Assuming HQ staff...").
- When policies differ by role/location, list variations clearly.
### Personalization
- Tailor responses to any role, location, or employment type provided.
- Mention if rules vary and what those differences are.
### Format
1. One-line summary.
2. Key details, steps, or rules.
3. Specific policy references (Document → Section → Subsection → Sub-subsection) where
the answer comes from.
4. Optional follow-up suggestion or clarifying question.
### Important
- Never guess or invent policy content.
- Maintain confidentiality and avoid personal data.
- User questions always begin with `###Question`. Respond only to those.
"""
hr_user_message_template = """
Consider the following ###Context and ###Question:
###Context
{context}
###Question
{question}
"""
# --------------------------
# PDF Parsing Utils
# --------------------------
def clean_text_hidden(s: str) -> str:
if not s:
return ""
s = re.sub(r"[\u200B-\u200F\u202A-\u202E\u00A0\u00AD]", " ", s)
s = re.sub(r"\s+", " ", s)
return s.strip()
def is_line_fully_bold(spans):
return all(
("Bold" in s["font"] or s["flags"] & 2 != 0)
for s in spans if s.get("text", "").strip()
)
def detect_font_levels(pdf_path):
doc = fitz.open(pdf_path)
font_sizes = []
for page in doc:
blocks = page.get_text("dict")["blocks"]
for b in blocks:
for l in b.get("lines", []):
for s in l.get("spans", []):
font_sizes.append(round(s["size"], 1))
unique_sizes = sorted(set(font_sizes), reverse=True)
if len(unique_sizes) > 3:
candidate_sizes = unique_sizes[1:-1]
else:
candidate_sizes = unique_sizes
section_size = candidate_sizes[0] if candidate_sizes else unique_sizes[0]
subsubsection_size = candidate_sizes[1] if len(candidate_sizes) > 1 else section_size
return section_size, subsubsection_size
def most_common_size(sizes):
return Counter(sizes).most_common(1)[0][0] if sizes else None
def parse_flykite(pdf_path):
section_size, subsubsection_size = detect_font_levels(pdf_path)
doc = fitz.open(pdf_path)
sections = []
current_section, current_subsection, current_subsubsection = None, None, None
for page_num, page in enumerate(doc, start=1):
blocks = page.get_text("dict")["blocks"]
for b in blocks:
for l in b.get("lines", []):
spans = l.get("spans", [])
line_text = "".join(s.get("text", "") for s in spans).strip()
line_text = clean_text_hidden(line_text)
if not line_text:
continue
span_sizes = [round(s["size"], 1) for s in spans]
line_size = most_common_size(span_sizes)
# SECTION/SUBSECTION
if line_size == section_size:
if is_line_fully_bold(spans) and "policy" in line_text.lower():
current_subsection = {"subsection": line_text, "subsubsections": [], "content": []}
if current_section:
current_section["subsections"].append(current_subsection)
else:
current_section = {"section": line_text, "subsections": []}
sections.append(current_section)
current_subsection = None
current_subsubsection = None
continue
# SUB-SUBSECTION
if re.match(r"^\d+\s*\.\s+", line_text):
if line_size == subsubsection_size:
is_heading = False
if is_line_fully_bold(spans):
is_heading = True
else:
if len(spans) > 1:
first_span_text = clean_text_hidden(spans[0]["text"]).strip()
if re.match(r"^\d+\.?$", first_span_text):
rest_bold = all(
("Bold" in s["font"] or s["flags"] & 2 != 0)
for s in spans[1:] if s.get("text", "").strip()
)
if rest_bold:
is_heading = True
if is_heading:
current_subsubsection = {"title": line_text, "content": []}
if current_subsection:
current_subsection["subsubsections"].append(current_subsubsection)
elif current_section:
auto_sub = {"subsection": current_section["section"], "subsubsections": []}
current_section["subsections"].append(auto_sub)
current_subsection = auto_sub
current_subsection["subsubsections"].append(current_subsubsection)
continue
# otherwise treat as content
if current_subsubsection:
current_subsubsection["content"].append(line_text)
elif current_subsection:
current_subsection["content"].append(line_text)
elif current_section:
current_section.setdefault("content", []).append(line_text)
else:
if not sections:
sections.append({"intro": [line_text]})
else:
sections[0].setdefault("intro", []).append(line_text)
return sections
# (REST calls, no LangChain-OpenAI).
class SimpleChat:
def __init__(self, model="gpt-4o-mini"):
self.model = model
self.api_key = os.getenv("OPENAI_API_KEY")
self.base_url = "https://api.openai.com/v1/chat/completions"
def invoke(self, messages, temperature=0, max_tokens=1500):
resp = requests.post(
self.base_url,
headers={"Authorization": f"Bearer {self.api_key}"},
json={
"model": self.model,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
)
resp.raise_for_status()
return resp.json()["choices"][0]["message"]["content"].strip()
# --------------------------
# Chunking + RAG
# --------------------------
# ADDED section_title & subsection_title alongside subsubsection_titLes into each chunk,
# so that any Chunk as it gets embedded
# >>>> It should have reference of the Parent level Section/Subsetion Titles information , in particular , as well ,
# >>>> Just in case , some End User says something at the level of Section Level mapped information.
# Secondly this helps to Increase trust and compliance by citing sources (document name, section, subsection, subsubsection as well) for each response.
# --- Flatten JSON to chunks ---
# Load spaCy NER model
nlp = spacy.load("en_core_web_sm")
# --- spaCy Extraction ---
def extract_with_spacy(text):
doc = nlp(text)
roles, locations, departments = [], [], []
for ent in doc.ents:
if ent.label_ in ["GPE", "LOC"]: # e.g., "Singapore"
locations.append(ent.text)
elif ent.label_ in ["ORG"]: # e.g., "HR", "Finance"
departments.append(ent.text)
elif ent.label_ in ["PERSON"]: # sometimes job titles slip
roles.append(ent.text)
return {
"roles": list(set(roles)),
"locations": list(set(locations)),
"departments": list(set(departments))
}
# --- LLM Extraction ---
def extract_with_llm(text):
prompt = f"""
You are an expert HR assistant for an airline company.
Your Task:
- Extract **Role(s)**, **Location(s)**, and **Department(s)** explicitly or implicitly mentioned
in the following HR policy text.
- Focus on aviation-related roles (e.g., Pilot, Cabin Crew, Engineer, Ground Staff, Field Staff),
locations (e.g., India, UK, Singapore, Headquarters), and departments (e.g., HR, Finance, Compliance, Operations).
- If something is implied (e.g., "field staff" → role=Field Staff, location unspecified), capture it.
- If no information is found, return an empty list for that field.
---
### FEW SHOTS Examples
Text: "Special leave for cabin crew in Singapore"
Output: {{"roles": ["Cabin Crew"], "locations": ["Singapore"], "departments": []}}
Text: "Pilots based in UK headquarters"
Output: {{"roles": ["Pilot"], "locations": ["United Kingdom", "Headquarters"], "departments": []}}
Text: "HR staff policies in India"
Output: {{"roles": [], "locations": ["India"], "departments": ["HR"]}}
Text: "Field staff in Dubai get separate insurance policy"
Output: {{"roles": ["Field Staff"], "locations": ["Dubai"], "departments": []}}
---
Now extract from:
{text}
Output:
Return only valid JSON in this exact schema:
{{
"roles": [list of roles],
"locations": [list of locations],
"departments": [list of departments]
}}
"""
try:
# (REST calls, no LangChain-OpenAI).
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
llm = SimpleChat(model="gpt-4o-mini")
messages = [
{"role": "user", "content": prompt}
]
content = llm.invoke(messages, temperature=0, max_tokens=1500)
# Enforce safe parsing
if content.startswith("{"):
extracted = json.loads(content)
else:
extracted = {"roles": [], "locations": [], "departments": []}
except Exception:
print("NOT ABLE TO RESOLVE LLM CALL XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")
extracted = {"roles": [], "locations": [], "departments": []}
return extracted
# --- Merge spaCy + LLM ---
def enrich_metadata(text):
spacy_res = extract_with_spacy(text)
llm_res = extract_with_llm(text)
return {
"roles": list(set(spacy_res["roles"] + llm_res["roles"])),
"locations": list(set(spacy_res["locations"] + llm_res["locations"])),
"departments": list(set(spacy_res["departments"] + llm_res["departments"]))
}
# --- Ensure metadata is Chroma-compatible ---
def sanitize_metadata(meta: dict) -> dict:
safe_meta = {}
for k, v in meta.items():
if isinstance(v, (str, int, float, bool)) or v is None:
safe_meta[k] = v
elif isinstance(v, (list, tuple)):
safe_meta[k] = ", ".join(map(str, v)) # flatten lists
elif isinstance(v, dict):
safe_meta[k] = json.dumps(v, ensure_ascii=False) # dict → string
else:
safe_meta[k] = str(v) # fallback
return safe_meta
# --- Flatten JSON to chunks ---
def flatten_json_to_chunks(structured_json, document_name="Flykite HR Policy Handbook"):
chunks = []
for sec in structured_json:
section_title = sec.get("section")
for sub in sec.get("subsections", []):
subsection_title = sub.get("subsection")
# Sub-subsections
for subsub in sub.get("subsubsections", []):
content_text = " ".join(subsub.get("content", []))
if content_text.strip():
enriched_meta = enrich_metadata(content_text)
meta = sanitize_metadata({
"document": document_name,
"section": section_title,
"subsection": subsection_title,
"subsubsection": subsub.get("title"),
**enriched_meta
})
chunks.append({
"text": f"{section_title} | {subsection_title} | {subsub.get('title')}\n\n{content_text}",
"metadata": meta
})
# Fallback: orphaned content under subsection
if sub.get("content"):
content_text = " ".join(sub.get("content", []))
enriched_meta = enrich_metadata(content_text)
meta = sanitize_metadata({
"document": document_name,
"section": section_title,
"subsection": subsection_title,
"subsubsection": "", # None, : Chroma doesn’t allow None values. They must be strings (or removed),
**enriched_meta
})
chunks.append({
"text": f"{section_title} | {subsection_title}\n\n{content_text}",
"metadata": meta
})
# Fallback: orphaned content under section
if sec.get("content"):
content_text = " ".join(sec.get("content", []))
enriched_meta = enrich_metadata(content_text)
meta = sanitize_metadata({
"document": document_name,
"section": section_title,
"subsection": "", # None, : Chroma doesn’t allow None values. They must be strings (or removed),
"subsubsection": "", # None, : Chroma doesn’t allow None values. They must be strings (or removed),
**enriched_meta
})
chunks.append({
"text": f"{section_title}\n\n{content_text}",
"metadata": meta
})
return chunks
def build_context(docs):
context_parts = []
for d in docs:
meta = d.metadata
citation = f"{meta.get('document')} → {meta.get('section')}"
if meta.get("subsection"):
citation += f" / {meta.get('subsection')}"
if meta.get("subsubsection"):
citation += f" / {meta.get('subsubsection')}"
context_parts.append(f"Source: {citation}\n{d.page_content}")
return "\n\n---\n\n".join(context_parts)
# -----------------------
# User Query Enrichment
# -----------------------
def extract_metadata_from_query(query: str):
"""Use spaCy + LLM to extract role/location/department from user query."""
spacy_res = extract_with_spacy(query)
print("spaCy results ## ==>", spacy_res)
llm_res = extract_with_llm(query)
print("LLM Extraction Results ## ==>", llm_res)
return {
"roles": list(set(spacy_res["roles"] + llm_res["roles"])),
"locations": list(set(spacy_res["locations"] + llm_res["locations"])),
"departments": list(set(spacy_res["departments"] + llm_res["departments"]))
}
# -----------------------
# Helper: Filter docs manually
# -----------------------
def filter_docs_by_metadata(docs, metadata_filters):
filtered = []
for d in docs:
meta = d.metadata
keep = True
if metadata_filters.get("roles"):
keep &= any(r in meta.get("roles", []) for r in metadata_filters["roles"])
if metadata_filters.get("locations"):
keep &= any(l in meta.get("locations", []) for l in metadata_filters["locations"])
if metadata_filters.get("departments"):
keep &= any(dep in meta.get("departments", []) for dep in metadata_filters["departments"])
if keep:
filtered.append(d)
return filtered
def generate_rag_response(user_input, retriever, k=3, max_tokens=1500):
# relevant_docs = retriever.get_relevant_documents(user_input)[:k]
# When user asks a query, we enrich it by extracting role, location, department using the same spaCy + LLM pipeline.
# Pass those extracted values as filters to the retriever → only chunks with matching metadata are considered.
# If nothing matches, fallback to plain semantic search (so we don’t block valid answers).
# Step 1: Extract personalization metadata from query
query_metadata = extract_metadata_from_query(user_input)
print("\n======================")
print(" User Query:", user_input)
print(" Extracted metadata from query:", query_metadata) # Investigatory log
# 2. Retrieve top-k docs semantically
retrieved_docs = retriever.get_relevant_documents(user_input, k=k)
print(f" Retrieved {len(retrieved_docs)} docs before filtering")
# 3. Apply metadata filtering
filtered_docs = filter_docs_by_metadata(retrieved_docs, query_metadata)
if filtered_docs:
selected_docs = filtered_docs
print(f"✅ {len(selected_docs)} docs kept after metadata filtering")
else:
selected_docs = retrieved_docs # fallback if no metadata match
print("⚠️ No metadata match, falling back to semantic retrieval only")
# Step 4: Log retrieved docs metadata
print(f"✅ Retrieved {len(selected_docs)} docs")
for i, d in enumerate(selected_docs, 1):
print(f"\n--- Chunk {i} ---")
print("Text:", d.page_content[:200], "...") # preview first 200 chars
print("Metadata:", d.metadata)
context_for_query = build_context(selected_docs)
user_prompt = hr_user_message_template.format(context=context_for_query, question=user_input)
messages = [
{"role": "system", "content": hr_system_message},
{"role": "user", "content": user_prompt},
]
#llm = ChatOpenAI(model="gpt-4o-mini", temperature=0, max_tokens=max_tokens)
#response = llm.invoke(messages)
#return {"answer": response.content, "sources": [d.metadata for d in relevant_docs]}
# You still used ChatOpenAI (from langchain-openai) for generating answers.
# That’s where the proxies keyword issue blew up, since that part was still using the buggy client.
# Error: your container is pulling in a version of langchain-openai (and maybe openai)
# that still tries to pass proxies to the OpenAI client, but in your current environment the client doesn’t accept that argument.
# (REST calls, no LangChain-OpenAI).
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
llm = SimpleChat(model="gpt-4o-mini")
answer = llm.invoke(messages, temperature=0, max_tokens=max_tokens)
return {"answer": answer, "sources": [d.metadata for d in selected_docs]}
# --------------------------
# FastAPI App
# --------------------------
#--================== START of API setup on reboot =====================
app = FastAPI()
persist_dir = "./flykite_chromadb"
retriever = None
class QueryRequest(BaseModel):
query: str
top_k: Optional[int] = 3
#@app.on_event("startup")
#def startup_event():
#global retriever
time.sleep(2) # ✅ give Hugging Face time to inject secrets
print("🔑 OPENAI_API_KEY loaded:", bool(os.getenv("OPENAI_API_KEY")))
pdf_path = "data/Dataset-FlykiteAirlines_HRP.pdf" #Place PDF IN the repo Boot
# Parse PDF → JSON
parsed_data = parse_flykite(pdf_path)
print(json.dumps(parsed_data[:1], indent=2, ensure_ascii=False))
if not parsed_data:
raise RuntimeError(" Parsed JSON is empty, cannot build chunks/vectorstore")
# Flatten chunks
chunks = flatten_json_to_chunks(parsed_data)
print(f" Loaded {len(chunks)} chunks from JSON")
# If no chunks, fail early
if not chunks:
raise RuntimeError("No chunks generated from structured JSON")
# Build Chroma vectorstore
# Define SimpleEmbeddings inline
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
class SimpleEmbeddings:
def __init__(self, model="text-embedding-3-small"):
self.model = model
self.api_key = os.getenv("OPENAI_API_KEY")
self.base_url = "https://api.openai.com/v1/embeddings"
def embed_documents(self, texts):
embeddings = []
for text in texts:
resp = requests.post(
self.base_url,
headers={"Authorization": f"Bearer {self.api_key}"},
json={"model": self.model, "input": text}
)
resp.raise_for_status()
embeddings.append(resp.json()["data"][0]["embedding"])
return embeddings
def embed_query(self, query):
resp = requests.post(
self.base_url,
headers={"Authorization": f"Bearer {self.api_key}"},
json={"model": self.model, "input": query}
)
resp.raise_for_status()
return resp.json()["data"][0]["embedding"]
# Use SimpleEmbeddings instead of OpenAIEmbeddings
embedding = SimpleEmbeddings(model="text-embedding-3-small")
texts = [c["text"] for c in chunks]
metadatas = [c["metadata"] for c in chunks]
vectorstore = Chroma.from_texts(
texts=texts,
embedding=embedding,
metadatas=metadatas,
persist_directory=persist_dir,
ids=[f"chunk_{i}" for i in range(len(chunks))]
)
vectorstore.persist() #ensure data is saved to disk
print("💾 Chroma vectorstore saved !!")
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
print(" PDF parsed, chunks embedded, retriever initialized.")
#--================== END of API setup on start =====================
#@app.post("/query")
#def query_endpoint(req: QueryRequest):
# return generate_rag_response(req.query, retriever, k=req.top_k)
def wait_for_key(key_name="OPENAI_API_KEY", timeout=10):
for _ in range(timeout):
if os.getenv(key_name):
print(f"✅ {key_name} available.")
return True
print(f"⏳ Waiting for {key_name}...")
time.sleep(1)
print(f"❌ {key_name} not found after {timeout} seconds.")
return False
# =============================
# Step 5: Chat Function
# =============================
def format_answer(result):
answer = result["answer"]
sources = result.get("sources", [])
formatted_sources = "\n".join([
f"- {s['document']} → {s['section']} / {s['subsection']} / {s['subsubsection']}"
for s in sources
])
return f"""{answer}
📄 **Sources**
{formatted_sources}
"""
def chat_fn(message, history):
global retriever
wait_for_key()
if retriever is None:
return "⚠️ Retriever not initialized. Please rebuild or check vector DB."
answer = generate_rag_response(message, retriever)
return format_answer(answer) #f"{answer}\n\n🧠 (Context retrieved from {pdf_path})"
# =============================
# Step 6: Chat bubbles UI
# =============================
import gradio as gr
css1 = r"""
#chatbot .user {
background: linear-gradient(to bottom right, #93c5fd, #60a5fa);
color: white;
border-radius: 18px 18px 4px 18px;
padding: 10px 14px;
margin: 6px 0;
text-align: right;
max-width: 75%;
margin-left: auto;
box-shadow: 0 2px 6px rgba(37,99,235,0.25);
}
#chatbot .bot {
background: #f3f4f6;
color: #111827;
border-radius: 18px 18px 18px 4px;
padding: 10px 14px;
margin: 6px 0;
text-align: left;
max-width: 75%;
margin-right: auto;
box-shadow: 0 2px 6px rgba(0,0,0,0.05);
}
@keyframes typing {
0%, 100% { opacity: 0.4; transform: translateY(0); }
50% { opacity: 1; transform: translateY(-4px); }
}
.typing-dot {
animation: typing 1s infinite;
}
"""
css = """
#chatbot {
background-color: #f7f9fc;
border-radius: 10px;
padding: 15px;
overflow-y: auto;
}
#chatbot .message {
display: flex;
margin: 10px 0;
}
#chatbot .message.user {
justify-content: flex-end;
}
#chatbot .message.bot {
justify-content: flex-start;
}
/* User bubble */
#chatbot .message.user .bubble {
background: linear-gradient(135deg, #4CAF50, #81C784);
color: white;
border-radius: 16px 16px 0 16px;
padding: 10px 15px;
max-width: 70%;
box-shadow: 0 2px 5px rgba(0,0,0,0.15);
}
/* Bot bubble */
#chatbot .message.bot .bubble {
background: linear-gradient(135deg, #2196F3, #64B5F6);
color: white;
border-radius: 16px 16px 16px 0;
padding: 10px 15px;
max-width: 70%;
box-shadow: 0 2px 5px rgba(0,0,0,0.15);
}
/* Optional: add smooth fade-in animation */
@keyframes bubblePop {
from { transform: scale(0.95); opacity: 0; }
to { transform: scale(1); opacity: 1; }
}
#chatbot .bubble {
animation: bubblePop 0.2s ease-out;
}
#footer {
position: fixed;
bottom: 5px;
left: 0;
width: 100%;
text-align: center;
font-size: 12px;
color: #777;
padding: 5px 0;
background: rgba(255, 255, 255, 0.7);
}
"""
footer_html = """
<br>
<div id="footer">
<table border=5 align=right>
<td align=left>
<b>AIML Oct 2024 Batch</b>
</td>
<td>
<font face="Arial" size=2 align=right color=navy blue>
Assignment - Capstone Project Interim: Airlines Q&A
[ <b> Naveen Garg, Dishant Kalra, Sandeep Maini, Ajeet Prasad, Abhishek Srivastava </b> ]
</font>
</td>
</table>
</div>
"""
# =============================
# Step 7: Launch App
# =============================
#def respond(message, history):
# return f"BubbleBot says: {message}"
gr.ChatInterface(
fn=chat_fn,
title="Flyline Chatbot ✈ ️",
description="Ask Flyline HR "+footer_html,
theme="soft",
css=css
).launch()
|